

¹ CAWSR: Carla-AutoWare Scenario Runner

² **David Gasinski** ¹, **Olek Osikowicz** ¹, **Gwilym Rutherford** ¹, and
³ **Donghwan Shin** ¹

⁴ 1 The University of Sheffield

DOI: [10.xxxxxx/draft](https://doi.org/10.xxxxxx/draft)

Software

- [Review](#)
- [Repository](#)
- [Archive](#)

Editor: [Open Journals](#)

Reviewers:

- [@openjournals](#)

Submitted: 01 January 1970

Published: unpublished

License

Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License ([CC BY 4.0](#))

⁵ Summary

⁶ CAWSR (**CARLA-AutoWare-Scenario Runner**) facilitates the simulation-based testing of the
⁷ open-source autonomous driving system, Autoware, within CARLA, the state-of-the-art open-
⁸ source driving simulator. Building on existing tools, this project introduces a research-oriented
⁹ testing framework for the execution of complex driving scenarios, as well as supporting the
¹⁰ implementation of a wide range of verification strategies.

¹¹ Statement of Need

¹² Verifying Autonomous Driving Systems (ADS) is a critical step before they can be deployed.
¹³ However, relying only on real-world testing is too expensive, inefficient, and potentially
¹⁴ dangerous. Consequently, simulation-based testing has become essential, allowing researchers
¹⁵ to safely test driving agents against critical situations at scale. Among these tools, CARLA
¹⁶ ([Dosovitskiy et al., 2017](#)) has become the de-facto standard in the research community due to
¹⁷ its rich ecosystem of open-source tools, benchmarks, and documentation.

¹⁸ Currently, the standard for evaluating ADS in CARLA is the CARLA Leaderboard and its
¹⁹ engine, Scenario Runner (SR) ([CARLA, 2025](#)). This framework is typically used to test
²⁰ “black-box” driving agents, such as ML-based systems which expose only sensor-level inputs
²¹ and driving control outputs. By running a set of predefined, challenging driving scenarios,
²² researchers can systematically assess agent performance using common metrics like driving
²³ score, infractions, and route completion. However, applying this testing framework to industry-
²⁴ grade ADS, such as Autoware ([Kato et al., 2018](#)) or Apollo ([Baidu, 2017](#)), remains difficult.
²⁵ Although communication bridges exist between CARLA and these systems ([Guardstrikelab,](#)
²⁶ [2023](#); [Kaljavesi et al., 2024](#)), they lack native support for scenario execution engines, which
²⁷ limits their utility for scenario-based testing.

²⁸ This gap has created a significant bottleneck for the research community. Previously, researchers
²⁹ developing scenario generation algorithms mainly relied on combining Apollo with the LGSVL
³⁰ simulator ([Rong et al., 2020](#)). However, LGSVL is now outdated, with official support ending
³¹ in January 2022. This leaves many researchers without a suitable industry-grade “subject”
³² for evaluating their algorithms. While recent tools like PCLA ([Tehrani et al., 2025](#)) attempt
³³ to simplify deploying Autoware (and other ADS implementations) into CARLA, they focus
³⁴ primarily on simplifying the ADS implementations and abstracting the setup process across
³⁵ different CARLA versions. They lack the deep integration required between the agent and
³⁶ simulator to execute complex, route-based scenarios.

³⁷ CAWSR aims to bridge this gap by enabling the evaluation of Autoware in complex driving
³⁸ scenarios within CARLA. By building on the established CARLA platform, this work provides a
³⁹ modern replacement for the outdated Apollo/LGSVL workflow. It also allows Autoware to be
⁴⁰ directly compared with state-of-the-art research agents on the CARLA Leaderboard.

⁴¹ Effective ADS verification requires the ability to systematically explore the operational design
⁴² domain. To support this, CAWSR provides a flexible interface for algorithmic scenario generation.
⁴³ This facilitates a wide range of verification strategies based on common metrics, such as the
⁴⁴ CARLA Leaderboard's driving score (CARLA Team, 2024).
⁴⁵ Lastly, it is worth noting that simulators can often introduce unintended nondeterminism,
⁴⁶ which leads to inconsistent test results (Chance et al., 2022; Osikowicz et al., 2025). Therefore,
⁴⁷ CAWSR is designed to minimise such nondeterminism throughout the evaluation pipeline.

⁴⁸ Research Impact

⁴⁹ CAWSR is the first verification tool of its kind to bridge the gap between CARLA and Autoware,
⁵⁰ intended as a modern replacement for the Apollo/LGSVL workflow. Designed for ease of use
⁵¹ and reproducibility, it enables researchers to build and evaluate scenario generation algorithms
⁵² on a state-of-the-art simulator platform with a modern, industry-grade ADS system.

⁵³ A primary contribution of this tool is the unification of evaluation standards. Industry-grade
⁵⁴ AD systems operate in disparate evaluation environments when compared to academic agents,
⁵⁵ which introduce unintended nondeterminism (Chance et al., 2022; Osikowicz et al., 2025).
⁵⁶ Built on the unified CARLA platform, CAWSR enables the execution of modular industry
⁵⁷ systems, facilitating direct comparison to academic agents (end-to-end models) under identical
⁵⁸ conditions.

⁵⁹ Furthermore, CAWSR offers a flexible programmatic interface for search-based testing and
⁶⁰ verification of Autoware through scenario generation algorithms. This enables researchers to
⁶¹ design verification strategies based on various metrics extracted from scenario execution, such
⁶² as the CARLA Leaderboard's driving score.

⁶³ CAWSR prioritises a streamlined deployment process for ease of use and reproducibility.
⁶⁴ By leveraging containerised deployment through Docker, the framework removes complex
⁶⁵ dependencies associated with Autoware and CARLA, simplifying the complexity of setup
⁶⁶ drastically. To support community adoption, a comprehensive set of tools and example
⁶⁷ implementations is provided, supplying the foundations for the development of new scenarios
⁶⁸ and verification strategies.

⁶⁹ Software Design

⁷⁰ CAWSR is a fully synchronous testing framework that directly integrates the CARLA simulator,
⁷¹ Scenario Runner (as the scenario executor), and Autoware (as the System Under Test) to
⁷² facilitate autonomous driving testing research. The tool is distributed as a containerized
⁷³ deployment using Docker to manage complex dependencies and simplify the setup process.
⁷⁴ Currently, two modes of operation are supported:

- ⁷⁵ 1. *Scenario Generation Mode*: Enables the dynamic generation and execution of scenarios
⁷⁶ (e.g. iterative scenario generation) provided by a user-defined algorithm. This is
⁷⁷ particularly useful for assessing the performance of new simulation-based ADS testing
⁷⁸ techniques.
- ⁷⁹ 2. *Benchmark Mode*: Allows the execution of a predefined set of scenario definitions provided
⁸⁰ by the user. This is useful for standardised evaluations and comparisons between different
⁸¹ driving agents.

⁸² The evaluation pipeline is engineered to be fully synchronous, minimising unintentional non-
⁸³ determinism to facilitate reproducible results. However, it is noted that minor variations may
⁸⁴ still persist due to inherent non-determinism in upstream dependencies, such as the driving
⁸⁵ simulator or the driving agent itself (Chance et al., 2022; Osikowicz et al., 2025).

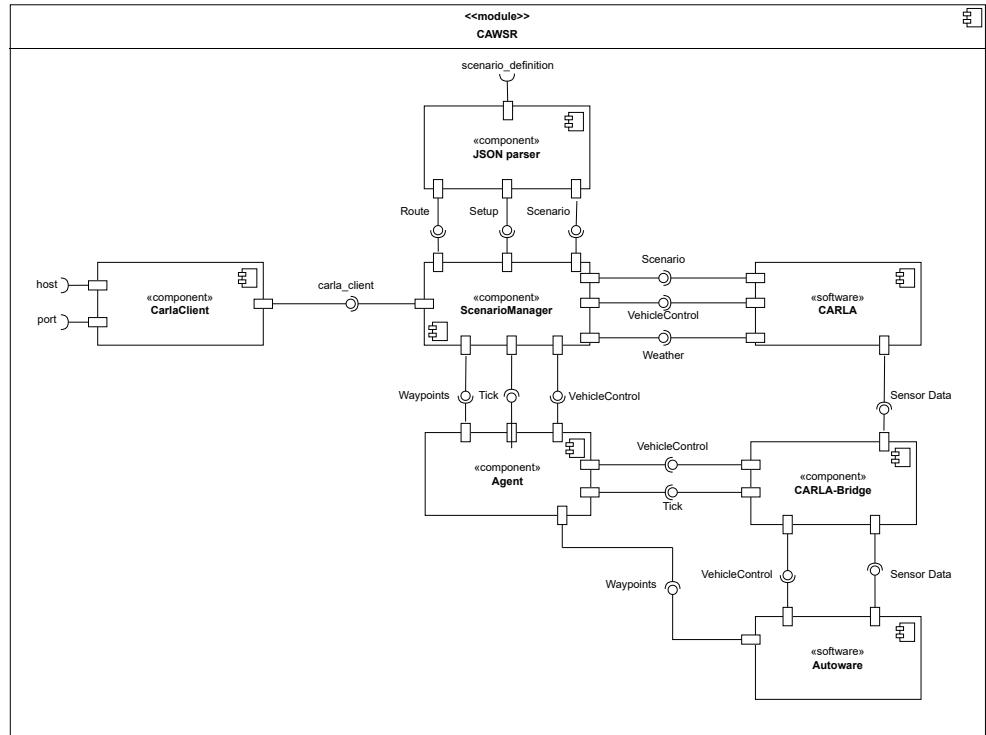


Figure 1: Internal component diagram of CAWSR.

86 **Figure 1** illustrates the CAWSR architecture and its fundamental components. The framework
87 operates through four primary modules:

- 88 89 90 **CarlaClient**: A native CARLA PythonAPI class that establishes a TCP connection (via host IP and port). It serves as the framework's exclusive interface for extracting simulation data and spawning entities.
- 91 92 93 **JSON Parser**: Translates the *scenario_definition* (see **Figure 2**) into a Behavior Tree (BT). It utilises Scenario Runner's *Atomic Behaviours* and *Atomic Conditions* as modular primitives to define discrete actions (e.g., spawning pedestrians) and logic triggers.
- 94 95 96 97 **ScenarioManager** (CARLA, 2025): Orchestrates the simulation loop by evaluating the BT to update actor states and triggering CARLA simulation ticks. Execution terminates based on CARLA Leaderboard criteria (CARLA Team, 2024), as summarised in **Table 1**. Post-execution, the module calculates the Driving Score (DS) according to the official leaderboard metrics.
- 98 99 100 101 102 **Agent** and **CarlaBridge**: The Agent manages the ROS2 connection to Autoware. At each timestep, the CarlaBridge (Kaljavesi et al., 2024) transforms CARLA snapshots and sensor data into the Autoware coordinate system. Autoware processes these inputs to issue control commands, which the Agent then applies to the ego vehicle.

Table 1: Termination Criteria of each scenario within CAWSR.

Termination Criteria	Description
Route_Completion	Agent reached the end of the route.
Actor_Blocked	Agent is blocked, not moving for 180s.
Simulation_Timeout	No client-server communication established (30s).

103 To facilitate development, we introduce a new domain model for the definition of route-based
 104 scenarios within CARLA, described in [Figure 2](#), alongside a JSON implementation. This model
 105 is based on the format introduced by Scenario Runner, facilitating support between both
 106 frameworks.

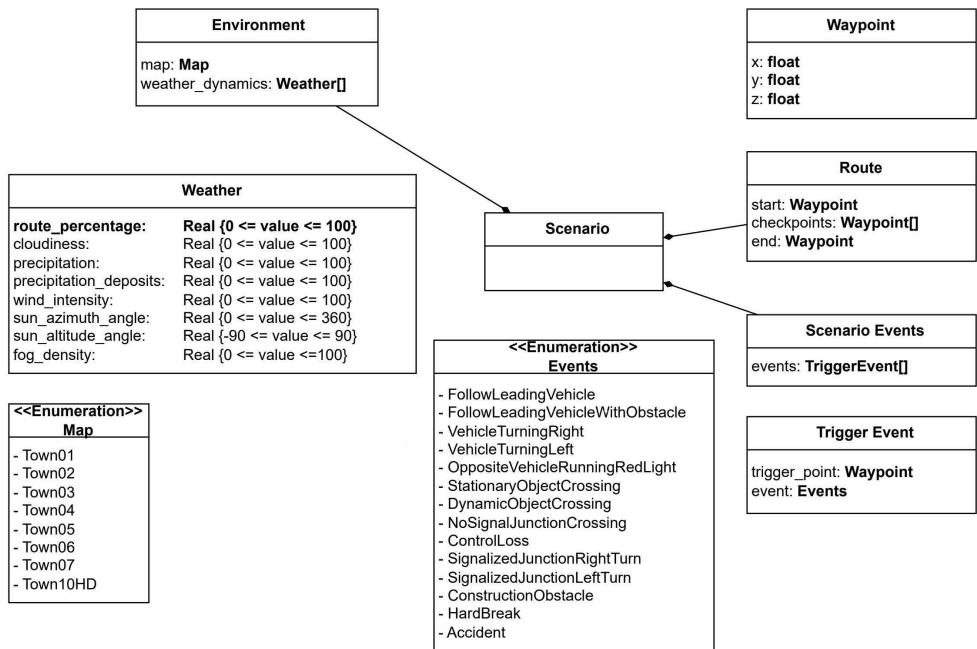


Figure 2: Scenario definition domain model.

Conclusion

107
 108 To summarise, CAWSR provides ADS testing research community an easy to use Autoware
 109 evaluation pipeline. We hope that this work can facilitate the evaluation of new testing
 110 approaches on a state of the art driving system.

AI Usage Disclosure

111
 112 Generative AI tools were used in this work solely to support high-level research concepts and
 113 structural ideas. All software implementation, including the source code, architecture, and
 114 deployment scripts, was authored entirely by the researchers without AI assistance.

Acknowledgements

115
 116 This work was supported by the Institute of Information & Communications Technology
 117 Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. RS-2025-
 118 02218761, 50%) and by the Engineering and Physical Sciences Research Council (EPSRC)
 119 [EP/Y014219/1].

References

120
 121 Baidu. (2017). *Apollo: Open Source Autonomous Driving*. <https://github.com/ApolloAuto/apollo>.

123 CARLA. (2025). *Scenario Runner: Traffic Scenario Definition and Execution Engine for*
124 *CARLA*. GitHub; https://github.com/carla-simulator/scenario_runner. https://github.com/carla-simulator/scenario_runner

126 CARLA Team. (2024). *Get started with leaderboard 2.0. CARLA autonomous driving*
127 *leaderboard*. https://leaderboard.carla.org/get_started_v2_0/

128 Chance, G., Ghobrial, A., McAreavey, K., Lemaignan, S., Pipe, T., & Eder, K. (2022). On
129 determinism of game engines used for simulation-based autonomous vehicle verification.
130 *IEEE Transactions on Intelligent Transportation Systems*, 23(11), 20538–20552. <https://doi.org/10.1109/TITS.2022.3177887>

132 Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open
133 urban driving simulator. *Proceedings of the 1st Annual Conference on Robot Learning*,
134 1–16.

135 Guardstrikelab. (2023). *carla_apollo_bridge: Data and Control Bridge for Apollo and Carla*.
136 GitHub; https://github.com/guardstrikelab/carla_apollo_bridge.

137 Kaljavesi, G., Kerbl, T., Betz, T., Mitkovskii, K., & Diermeyer, F. (2024). *CARLA-autoware-bridge: Facilitating autonomous driving research with a unified framework for simulation*
138 *and module development*. 224–229. <https://doi.org/10.1109/iv55156.2024.10588623>

140 Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy, A.,
141 Ando, T., Fujii, Y., & Azumi, T. (2018). Autoware on board: Enabling autonomous vehicles
142 with embedded systems. *2018 ACM/IEEE 9th International Conference on Cyber-Physical*
143 *Systems (ICCPS)*, 287–296. <https://doi.org/10.1109/iccps.2018.00035>

144 Osikowicz, O., McMinn, P., & Shin, D. (2025). Empirically evaluating flaky tests for au-
145 tonomous driving systems in simulated environments. *2025 IEEE/ACM International Flaky*
146 *Tests Workshop (FTW)*, 13–20. <https://doi.org/10.1109/FTW66604.2025.00009>

147 Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm,
148 G., Gerow, M., Mehta, S., Agafonov, E., Kim, T. H., Sternner, E., Ushiroda, K., Reyes,
149 M., Zelenkovsky, D., & Kim, S. (2020). LGSVL simulator: A high fidelity simulator for
150 autonomous driving. *2020 IEEE 23rd International Conference on Intelligent Transportation*
151 *Systems (ITSC)*, 1–6. <https://doi.org/10.1109/ITSC45102.2020.9294422>

152 Tehrani, M. J., Kim, J., & Tonella, P. (2025). PCLA: A framework for testing autonomous
153 agents in the CARLA simulator. *Proceedings of the 33rd ACM International Conference on*
154 *the Foundations of Software Engineering*, 1040–1044. <https://doi.org/10.1145/3696630.3728577>