The Journal of Open Source Software

DOI: 10.xxxxxx/draft

Software
= Review &4 5
= Repository @

= Archive 7 6

Editor: Open Journals @@
Reviewers:

= @openjournals

Submitted: 01 January 1970
Published: unpublished

12
License 13
Authors of papers retain copyright
and release the work under a 15
Creative Commons Attribution 4.0,
International License (CC BY 4.0),

18
19
20
21
22
23
24
25
26

27

28
29
30
31
32
33
34
35

36

37
38
39

40

CAWSR: Carla-AutoWare Scenario Runner

1 Olek Osikowicz @, Gwilym Rutherford ®!, and

1

David Gasinski
Donghwan Shin

1 The University of Sheffield

Summary

CAWSR (CARLA-AutoWare-Scenario Runner) facilitates the simulation-based testing of the
open-source autonomous driving system, Autoware, within CARLA, the state-of-the-art open-
source driving simulator. Building on existing tools, this project introduces a research-oriented
testing framework for the execution of complex driving scenarios, as well as supporting the
implementation of a wide range of verification strategies.

Statement of Need

Verifying Autonomous Driving Systems (ADS) is a critical step before they can be deployed.
However, relying only on real-world testing is too expensive, inefficient, and potentially
dangerous. Consequently, simulation-based testing has become essential, allowing researchers
to safely test driving agents against critical situations at scale. Among these tools, CARLA
(Dosovitskiy et al., 2017) has become the de-facto standard in the research community due to
its rich ecosystem of open-source tools, benchmarks, and documentation.

Currently, the standard for evaluating ADS in CARLA is the CARLA Leaderboard and its
engine, Scenario Runner (SR) (CARLA, 2025). This framework is typically used to test
“black-box" driving agents, such as ML-based systems which expose only sensor-level inputs
and driving control outputs. By running a set of predefined, challenging driving scenarios,
researchers can systematically assess agent performance using common metrics like driving
score, infractions, and route completion. However, applying this testing framework to industry-
grade ADS, such as Autoware (Kato et al., 2018) or Apollo (Baidu, 2017), remains difficult.
Although communication bridges exist between CARLA and these systems (Guardstrikelab,
2023; Kaljavesi et al., 2024), they lack native support for scenario execution engines, which
limits their utility for scenario-based testing.

This gap has created a significant bottleneck for the research community. Previously, researchers
developing scenario generation algorithms mainly relied on combining Apollo with the LGSVL
simulator (Rong et al., 2020). However, LGSVL is now outdated, with official support ending
in January 2022. This leaves many researchers without a suitable industry-grade “subject”
for evaluating their algorithms. While recent tools like PCLA (Tehrani et al., 2025) attempt
to simplify deploying Autoware (and other ADS implementations) into CARLA, they focus
primarily on simplifying the ADS implementations and abstracting the setup process across
different CARLA versions. They lack the deep integration required between the agent and
simulator to execute complex, route-based scenarios.

CAWSR aims to bridge this gap by enabling the evaluation of Autoware in complex driving
scenarios within CARLA. By building on the established CARLA platform, this work provides a
modern replacement for the outdated Apollo/LGSVL workflow. It also allows Autoware to be
directly compared with state-of-the-art research agents on the CARLA Leaderboard.

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ;VOL?(iISSUE?), ;PAGE? https: 1

//doi.org/10.xxxxxx/draft.

https://orcid.org/0009-0008-7597-333X
https://orcid.org/0009-0002-7515-7101
https://orcid.org/0009-0007-8820-1091
https://orcid.org/0000-0002-0840-6449
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

P51

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

Effective ADS verification requires the ability to systematically explore the operational design
domain. To support this, CAWSR provides a flexible interface for algorithmic scenario generation.
This facilitates a wide range of verification strategies based on common metrics, such as the
CARLA Leaderboard'’s driving score (CARLA Team, 2024).

Lastly, it is worth noting that simulators can often introduce unintended nondeterminism,
which leads to inconsistent test results (Chance et al., 2022; Osikowicz et al., 2025). Therefore,
CAWSR is designed to minimise such nondeterminism throughout the evaluation pipeline.

Research Impact

CAWSR is the first verification tool of its kind to bridge the gap between CARLA and Autoware,
intended as a modern replacement for the Apollo/LGSVL workflow. Designed for ease of use
and reproducibility, it enables researchers to build and evaluate scenario generation algorithms
on a state-of-the-art simulator platform with a modern, industry-grade ADS system.

A primary contribution of this tool is the unification of evaluation standards. Industry-grade
AD systems operate in disparate evaluation environments when compared to academic agents,
which introduce unintended nondeterminism(Chance et al., 2022; Osikowicz et al., 2025).
Built on the unified CARLA platform, CAWSR enables the execution of modular industry
systems, facilitating direct comparison to academic agents (end-to-end models) under identical
conditions.

Furthermore, CAWSR offers a flexible programmatic interface for search-based testing and
verification of Autoware through scenario generation algorithms. This enables researchers to
design verification strategies based on various metrics extracted from scenario execution, such
as the CARLA Leaderboard's driving score.

CAWSR prioritises a streamlined ‘deployment process for ease of use and reproducibility.
By leveraging containerised deployment through Docker, the framework removes complex
dependencies associated with Autoware and CARLA, simplifying the complexity of setup
drastically. To support community adoption, a comprehensive set of tools and example
implementations is provided, supplying the foundations for the development of new scenarios
and verification strategies.

Software Design

CAWSR is a fully synchronous testing framework that directly integrates the CARLA simulator,
Scenario Runner (as the scenario executor), and Autoware (as the System Under Test) to
facilitate autonomous driving testing research. The tool is distributed as a containerized
deployment using Docker to manage complex dependencies and simplify the setup process.
Currently, two modes of operation are supported:

1. Scenario Generation Mode: Enables the dynamic generation and execution of scenar-
ios (e.g. iterative scenario generation) provided by a user-defined algorithm. This is
particularly useful for assessing the performance of new simulation-based ADS testing
techniques.

2. Benchmark Mode: Allows the execution of a predefined set of scenario definitions provided
by the user. This is useful for standardised evaluations and comparisons between different
driving agents.

The evaluation pipeline is engineered to be fully synchronous, minimising unintentional non-
determinism to facilitate reproducible results. However, it is noted that minor variations may
still persist due to inherent non-determinism in upstream dependencies, such as the driving
simulator or the driving agent itself (Chance et al., 2022; Osikowicz et al., 2025).

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ;VOL?(;1ISSUE?), ;PAGE? https: 2

//doi.org/10.xxxxxx/draft.

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

86

87

88

89

90

91

92

93

94

95

96

97

98

100

101

102

<<module>> %j

CAWSR

scenario_definition

g]

«component
JSON parser

Scenario

g]

carla_client

CarlaClient

Waypoints Sensor Data

i
g

VehicleControl

«component»
CARLA-Bridge

«software»
Autoware

Figure 1: Internal component diagram of CAWSR.

Figure 1 illustrates the CAWSR architecture and its fundamental components. The framework
operates through four primary modules:

= CarlaClient: A native CARLA PythonAPI class that establishes a TCP connection

(via host IP and port). It serves as the framework's exclusive interface for extracting
simulation data and spawning entities.

JSON Parser: Translates the scenario_definition (see Figure 2) into a Behavior Tree
(BT). It utilises Scenario Runner's Atomic Behaviours and Atomic Conditions as modular
primitives to define discrete actions (e.g., spawning pedestrians) and logic triggers.

ScenarioManager(CARLA, 2025): Orchestrates the simulation loop by evaluating the
BT to update actor states and triggering CARLA simulation ticks. Execution terminates
based on CARLA Leaderboard criteria (CARLA Team, 2024), as summarised in Table 1.
Post-execution, the module calculates the Driving Score (DS) according to the official
leaderboard metrics.

= Agent and CarlaBridge: The Agent manages the ROS2 connection to Autoware. At

each timestep, the CarlaBridge (Kaljavesi et al., 2024) transforms CARLA snapshots
and sensor data into the Autoware coordinate system. Autoware processes these inputs
to issue control commands, which the Agent then applies to the ego vehicle.

Table 1: Termination Criteria of each scenario within CAWSR.

Termination Criteria Description

Route_Completion Agent reached the end of the route.
Actor_Blocked Agent is blocked, not moving for 180s.
Simulation_Timeout No client-server communication established (30s).

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ; VOL?(;ISSUE?), ;PAGE? https: 3

//doi.org/10.xxxxxx/draft.

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

103 To facilitate development, we introduce a new domain model for the definition of route-based
s scenarios within CARLA, described in Figure 2, alongside a JSON implementation. This model
s is based on the format introduced by Scenario Runner, facilitating support between both
s frameworks.

Environment Waypoint
map: Map x: float
weather_dynamics: Weather([] y: float

z: float
Route
Weather
start: Waypoint
route_percentage: Real {0 <= value <= 100} Scenario checkpoints: Waypoint[]
cloudiness: Real {0 <= value <= 100} | end: Waypoint

precipitation: Real {0 <= value <= 100}
precipitation_deposits: Real {0 <= value <= 100}
wind_intensity: Real {0 <= value <= 100}
sun_azimuth_angle: Real {0 <= value <= 360}
sun_altitude_angle: Real {-90 <= value <= 90}
fog_density: Real {0 <= value <=100}

i

Scenario Events

<<Enumeration>>
Events

events: TriggerEvent[]

- FollowLeadingVehicle

<<Enumeration>> - FollowLeadingVehicleWithObstacle
Map - VehicleTurningRight Trigger Event
- Town01 - VehiclgTurnir_\gLeﬂ _)
- Town02 - OppositeVehicleRunningRedLight trigger_point: Waypoint
- Town03 - Statlon_aryO_b]ectCros_smg event: Events
- Town04 - Dyne_zmlcObJec‘tCrossmg
- Town05 - NoSignalJunctionCrossing
- Town06 - C_ontro_ILoss])
- Town07 - S!gnal!zedJunct!oanghtTurn
- Town10HD - Slgnal|zeqlJunct|onLeftTurn
- ConstructionObstacle
- HardBreak
- Accident

Figure 2: Scenario definition domain model.

o Conclusion

w8 To summarise, CAWSR provides ADS testing research community an easy to use Autoware
1o evaluation pipeline. We hope that this work can facilitate the evaluation of new testing
1o approaches on a state of the art driving system.

xu Al Usage Disclosure

2 Generative Al tools were used in this work solely to support high-level research concepts and
u3 structural ideas. All software implementation, including the source code, architecture, and
us deployment scripts, was authored entirely by the researchers without Al assistance.

s Acknowledgements

us This work was supported by the Institute of Information & Communications Technology
7 Planning & Evaluation(lITP) grant funded by the Korea government(MSIT) (No. RS-2025-
us 02218761, 50%) and by the Engineering and Physical Sciences Research Council (EPSRC)
w [EP/Y014219/1].

= References

11 Baidu. (2017)
122 loAuto/apollo.

Apollo: Open Source Autonomous Driving. https://github.com/Apol-

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ;VOL?({ISSUE?), ;PAGE? https: 4
//doi.org/10.xxxxxx/draft.

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

The Journal of Open Source Software

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

154

155

CARLA. (2025). Scenario Runner: Traffic Scenario Definition and Execution Engine for
CARLA. GitHub; https://github.com/carla-simulator/scenario_runner. https://github.
com/carla-simulator/scenario_runner

CARLA Team. (2024). Get started with leaderboard 2.0. CARLA autonomous driving
leaderboard. https://leaderboard.carla.org/get_started_v2_0/

Chance, G., Ghobrial, A., McAreavey, K., Lemaignan, S., Pipe, T., & Eder, K. (2022). On
determinism of game engines used for simulation-based autonomous vehicle verification.
IEEE Transactions on Intelligent Transportation Systems, 23(11), 20538-20552. https:
//doi.org/10.1109/TITS.2022.3177887

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open
urban driving simulator. Proceedings of the 1st Annual Conference on Robot Learning,
1-16.

Guardstrikelab. (2023). carla_apollo_bridge: Data and Control Bridge for Apollo and Carla.
GitHub; https://github.com/guardstrikelab/carla_apollo_bridge.

Kaljavesi, G., Kerbl, T., Betz, T., Mitkovskii, K., & Diermeyer, F. (2024). CARLA-autoware-
bridge: Facilitating autonomous driving research with a unified framework for simulation
and module development. 224-229. https://doi.org/10.1109/iv55156.2024.10588623

Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy, A.,
Ando, T., Fujii, Y., & Azumi, T. (2018). Autoware on board: Enabling autonomous vehicles
with embedded systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS), 287-296. https://doi.org/10.1109 /iccps.2018.00035

Osikowicz, O., McMinn, P., & Shin, D. (2025). Empirically evaluating flaky tests for au-
tonomous driving systems in simulated environments. 2025 IEEE/ACM International Flaky
Tests Workshop (FTW), 13-20. https://doi.org/10.1109/FTW66604.2025.00009

Rong, G.,; Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Mozeiko, M., Boise, E., Uhm,
G., Gerow, M., Mehta, S., Agafonov, E., Kim, T. H., Sterner, E., Ushiroda, K., Reyes,
M., Zelenkovsky, D., & Kim, S. (2020). LGSVL simulator: A high fidelity simulator for
autonomous driving. 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC), 1-6. https://doi.org/10.1109/ITSC45102.2020.9294422

Tehrani, M. J., Kim, J., & Tonella, P. (2025). PCLA: A framework for testing autonomous
agents in the CARLA simulator. Proceedings of the 33rd ACM International Conference on
the Foundations of Software Engineering, 1040-1044. https://doi.org/10.1145/3696630.
3728577

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ;VOL?(;ISSUE?), ;PAGE? https: 5

//doi.org/10.xxxxxx/draft.

https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://leaderboard.carla.org/get_started_v2_0/
https://doi.org/10.1109/TITS.2022.3177887
https://doi.org/10.1109/TITS.2022.3177887
https://doi.org/10.1109/TITS.2022.3177887
https://github.com/guardstrikelab/carla_apollo_bridge
https://doi.org/10.1109/iv55156.2024.10588623
https://doi.org/10.1109/iccps.2018.00035
https://doi.org/10.1109/FTW66604.2025.00009
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Research Impact
	Software Design
	Conclusion
	AI Usage Disclosure
	Acknowledgements
	References

