
DRAFT
CAWSR: Carla-AutoWare Scenario Runner1

David Gasinski 1, Olek Osikowicz 1, Gwilym Rutherford 1, and2

Donghwan Shin 1
3

1 The University of Sheffield4

DOI: 10.xxxxxx/draft

Software
• Review
• Repository
• Archive

Editor: Open Journals
Reviewers:

• @openjournals

Submitted: 01 January 1970
Published: unpublished

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary5

CAWSR (CARLA-AutoWare-Scenario Runner) facilitates the simulation-based testing of the6

open-source autonomous driving system, Autoware, within CARLA, the state-of-the-art open-7

source driving simulator. Building on existing tools, this project introduces a research-oriented8

testing framework for the execution of complex driving scenarios, as well as supporting the9

implementation of a wide range of verification strategies.10

Statement of Need11

Verifying Autonomous Driving Systems (ADS) is a critical step before they can be deployed.12

However, relying only on real-world testing is too expensive, inefficient, and potentially13

dangerous. Consequently, simulation-based testing has become essential, allowing researchers14

to safely test driving agents against critical situations at scale. Among these tools, CARLA15

(Dosovitskiy et al., 2017) has become the de-facto standard in the research community due to16

its rich ecosystem of open-source tools, benchmarks, and documentation.17

Currently, the standard for evaluating ADS in CARLA is the CARLA Leaderboard and its18

engine, Scenario Runner (SR) (CARLA, 2025). This framework is typically used to test19

“black-box” driving agents, such as ML-based systems which expose only sensor-level inputs20

and driving control outputs. By running a set of predefined, challenging driving scenarios,21

researchers can systematically assess agent performance using common metrics like driving22

score, infractions, and route completion. However, applying this testing framework to industry-23

grade ADS, such as Autoware (Kato et al., 2018) or Apollo (Baidu, 2017), remains difficult.24

Although communication bridges exist between CARLA and these systems (Guardstrikelab,25

2023; Kaljavesi et al., 2024), they lack native support for scenario execution engines, which26

limits their utility for scenario-based testing.27

This gap has created a significant bottleneck for the research community. Previously, researchers28

developing scenario generation algorithms mainly relied on combining Apollo with the LGSVL29

simulator (Rong et al., 2020). However, LGSVL is now outdated, with official support ending30

in January 2022. This leaves many researchers without a suitable industry-grade “subject”31

for evaluating their algorithms. While recent tools like PCLA (Tehrani et al., 2025) attempt32

to simplify deploying Autoware (and other ADS implementations) into CARLA, they focus33

primarily on simplifying the ADS implementations and abstracting the setup process across34

different CARLA versions. They lack the deep integration required between the agent and35

simulator to execute complex, route-based scenarios.36

CAWSR aims to bridge this gap by enabling the evaluation of Autoware in complex driving37

scenarios within CARLA. By building on the established CARLA platform, this work provides a38

modern replacement for the outdated Apollo/LGSVL workflow. It also allows Autoware to be39

directly compared with state-of-the-art research agents on the CARLA Leaderboard.40

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

1

https://orcid.org/0009-0008-7597-333X
https://orcid.org/0009-0002-7515-7101
https://orcid.org/0009-0007-8820-1091
https://orcid.org/0000-0002-0840-6449
https://doi.org/10.xxxxxx/draft
https://github.com/openjournals
https://github.com/openjournals
https://doi.org/10.5281
https://joss.theoj.org
https://github.com/openjournals
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
Effective ADS verification requires the ability to systematically explore the operational design41

domain. To support this, CAWSR provides a flexible interface for algorithmic scenario generation.42

This facilitates a wide range of verification strategies based on common metrics, such as the43

CARLA Leaderboard’s driving score (CARLA Team, 2024).44

Lastly, it is worth noting that simulators can often introduce unintended nondeterminism,45

which leads to inconsistent test results (Chance et al., 2022; Osikowicz et al., 2025). Therefore,46

CAWSR is designed to minimise such nondeterminism throughout the evaluation pipeline.47

Research Impact48

CAWSR is the first verification tool of its kind to bridge the gap between CARLA and Autoware,49

intended as a modern replacement for the Apollo/LGSVL workflow. Designed for ease of use50

and reproducibility, it enables researchers to build and evaluate scenario generation algorithms51

on a state-of-the-art simulator platform with a modern, industry-grade ADS system.52

A primary contribution of this tool is the unification of evaluation standards. Industry-grade53

AD systems operate in disparate evaluation environments when compared to academic agents,54

which introduce unintended nondeterminism(Chance et al., 2022; Osikowicz et al., 2025).55

Built on the unified CARLA platform, CAWSR enables the execution of modular industry56

systems, facilitating direct comparison to academic agents (end-to-end models) under identical57

conditions.58

Furthermore, CAWSR offers a flexible programmatic interface for search-based testing and59

verification of Autoware through scenario generation algorithms. This enables researchers to60

design verification strategies based on various metrics extracted from scenario execution, such61

as the CARLA Leaderboard’s driving score.62

CAWSR prioritises a streamlined deployment process for ease of use and reproducibility.63

By leveraging containerised deployment through Docker, the framework removes complex64

dependencies associated with Autoware and CARLA, simplifying the complexity of setup65

drastically. To support community adoption, a comprehensive set of tools and example66

implementations is provided, supplying the foundations for the development of new scenarios67

and verification strategies.68

Software Design69

CAWSR is a fully synchronous testing framework that directly integrates the CARLA simulator,70

Scenario Runner (as the scenario executor), and Autoware (as the System Under Test) to71

facilitate autonomous driving testing research. The tool is distributed as a containerized72

deployment using Docker to manage complex dependencies and simplify the setup process.73

Currently, two modes of operation are supported:74

1. Scenario Generation Mode: Enables the dynamic generation and execution of scenar-75

ios (e.g. iterative scenario generation) provided by a user-defined algorithm. This is76

particularly useful for assessing the performance of new simulation-based ADS testing77

techniques.78

2. Benchmark Mode: Allows the execution of a predefined set of scenario definitions provided79

by the user. This is useful for standardised evaluations and comparisons between different80

driving agents.81

The evaluation pipeline is engineered to be fully synchronous, minimising unintentional non-82

determinism to facilitate reproducible results. However, it is noted that minor variations may83

still persist due to inherent non-determinism in upstream dependencies, such as the driving84

simulator or the driving agent itself (Chance et al., 2022; Osikowicz et al., 2025).85

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

2

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
<<module>>

CAWSR

«component»
JSON parser

«component»
CarlaClient

host

port

carla_client

«component»
Agent

«component»
ScenarioManager

«software»
Autoware

«software»
CARLA

Route Setup Scenario

Weather

Scenario

Waypoints

VehicleControl

Sensor Data

Sensor Data

VehicleControl

Waypoints

«component»
CARLA-Bridge

Tick

VehicleControl

VehicleControl

Tick

scenario_definition

Figure 1: Internal component diagram of CAWSR.

Figure 1 illustrates the CAWSR architecture and its fundamental components. The framework86

operates through four primary modules:87

• CarlaClient: A native CARLA PythonAPI class that establishes a TCP connection88

(via host IP and port). It serves as the framework’s exclusive interface for extracting89

simulation data and spawning entities.90

• JSON Parser: Translates the scenario_definition (see Figure 2) into a Behavior Tree91

(BT). It utilises Scenario Runner’s Atomic Behaviours and Atomic Conditions as modular92

primitives to define discrete actions (e.g., spawning pedestrians) and logic triggers.93

• ScenarioManager(CARLA, 2025): Orchestrates the simulation loop by evaluating the94

BT to update actor states and triggering CARLA simulation ticks. Execution terminates95

based on CARLA Leaderboard criteria (CARLA Team, 2024), as summarised in Table 1.96

Post-execution, the module calculates the Driving Score (DS) according to the official97

leaderboard metrics.98

• Agent and CarlaBridge: The Agent manages the ROS2 connection to Autoware. At99

each timestep, the CarlaBridge (Kaljavesi et al., 2024) transforms CARLA snapshots100

and sensor data into the Autoware coordinate system. Autoware processes these inputs101

to issue control commands, which the Agent then applies to the ego vehicle.102

Table 1: Termination Criteria of each scenario within CAWSR.

Termination Criteria Description
Route_Completion Agent reached the end of the route.
Actor_Blocked Agent is blocked, not moving for 180s.
Simulation_Timeout No client-server communication established (30s).

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

3

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
To facilitate development, we introduce a new domain model for the definition of route-based103

scenarios within CARLA, described in Figure 2, alongside a JSON implementation. This model104

is based on the format introduced by Scenario Runner, facilitating support between both105

frameworks.106

Figure 2: Scenario definition domain model.

Conclusion107

To summarise, CAWSR provides ADS testing research community an easy to use Autoware108

evaluation pipeline. We hope that this work can facilitate the evaluation of new testing109

approaches on a state of the art driving system.110

AI Usage Disclosure111

Generative AI tools were used in this work solely to support high-level research concepts and112

structural ideas. All software implementation, including the source code, architecture, and113

deployment scripts, was authored entirely by the researchers without AI assistance.114

Acknowledgements115

This work was supported by the Institute of Information & Communications Technology116

Planning & Evaluation(IITP) grant funded by the Korea government(MSIT) (No. RS-2025-117

02218761, 50%) and by the Engineering and Physical Sciences Research Council (EPSRC)118

[EP/Y014219/1].119

References120

Baidu. (2017). Apollo: Open Source Autonomous Driving. https://github.com/Apol-121

loAuto/apollo.122

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft


DRAFT
CARLA. (2025). Scenario Runner: Traffic Scenario Definition and Execution Engine for123

CARLA. GitHub; https://github.com/carla-simulator/scenario_runner. https://github.124

com/carla-simulator/scenario_runner125

CARLA Team. (2024). Get started with leaderboard 2.0. CARLA autonomous driving126

leaderboard. https://leaderboard.carla.org/get_started_v2_0/127

Chance, G., Ghobrial, A., McAreavey, K., Lemaignan, S., Pipe, T., & Eder, K. (2022). On128

determinism of game engines used for simulation-based autonomous vehicle verification.129

IEEE Transactions on Intelligent Transportation Systems, 23(11), 20538–20552. https:130

//doi.org/10.1109/TITS.2022.3177887131

Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open132

urban driving simulator. Proceedings of the 1st Annual Conference on Robot Learning,133

1–16.134

Guardstrikelab. (2023). carla_apollo_bridge: Data and Control Bridge for Apollo and Carla.135

GitHub; https://github.com/guardstrikelab/carla_apollo_bridge.136

Kaljavesi, G., Kerbl, T., Betz, T., Mitkovskii, K., & Diermeyer, F. (2024). CARLA-autoware-137

bridge: Facilitating autonomous driving research with a unified framework for simulation138

and module development. 224–229. https://doi.org/10.1109/iv55156.2024.10588623139

Kato, S., Tokunaga, S., Maruyama, Y., Maeda, S., Hirabayashi, M., Kitsukawa, Y., Monrroy, A.,140

Ando, T., Fujii, Y., & Azumi, T. (2018). Autoware on board: Enabling autonomous vehicles141

with embedded systems. 2018 ACM/IEEE 9th International Conference on Cyber-Physical142

Systems (ICCPS), 287–296. https://doi.org/10.1109/iccps.2018.00035143

Osikowicz, O., McMinn, P., & Shin, D. (2025). Empirically evaluating flaky tests for au-144

tonomous driving systems in simulated environments. 2025 IEEE/ACM International Flaky145

Tests Workshop (FTW), 13–20. https://doi.org/10.1109/FTW66604.2025.00009146

Rong, G., Shin, B. H., Tabatabaee, H., Lu, Q., Lemke, S., Možeiko, M., Boise, E., Uhm,147

G., Gerow, M., Mehta, S., Agafonov, E., Kim, T. H., Sterner, E., Ushiroda, K., Reyes,148

M., Zelenkovsky, D., & Kim, S. (2020). LGSVL simulator: A high fidelity simulator for149

autonomous driving. 2020 IEEE 23rd International Conference on Intelligent Transportation150

Systems (ITSC), 1–6. https://doi.org/10.1109/ITSC45102.2020.9294422151

Tehrani, M. J., Kim, J., & Tonella, P. (2025). PCLA: A framework for testing autonomous152

agents in the CARLA simulator. Proceedings of the 33rd ACM International Conference on153

the Foundations of Software Engineering, 1040–1044. https://doi.org/10.1145/3696630.154

3728577155

Gasinski et al. (2026). CAWSR: Carla-AutoWare Scenario Runner. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https:
//doi.org/10.xxxxxx/draft.

5

https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://github.com/carla-simulator/scenario_runner
https://leaderboard.carla.org/get_started_v2_0/
https://doi.org/10.1109/TITS.2022.3177887
https://doi.org/10.1109/TITS.2022.3177887
https://doi.org/10.1109/TITS.2022.3177887
https://github.com/guardstrikelab/carla_apollo_bridge
https://doi.org/10.1109/iv55156.2024.10588623
https://doi.org/10.1109/iccps.2018.00035
https://doi.org/10.1109/FTW66604.2025.00009
https://doi.org/10.1109/ITSC45102.2020.9294422
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.1145/3696630.3728577
https://doi.org/10.xxxxxx/draft
https://doi.org/10.xxxxxx/draft

	Summary
	Statement of Need
	Research Impact
	Software Design
	Conclusion
	AI Usage Disclosure
	Acknowledgements
	References

