
Multi-Fidelity Bayesian Optimization for Simulation
Based Autonomous Driving Systems Testing

Olek Osikowicz∗, Phil McMinn∗, Wei Xing†, Donghwan Shin∗
∗School of Computer Science, †School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK

{amosikowicz1, p.mcminn, w.xing, d.shin}@sheffield.ac.uk

Abstract—Simulation-based testing has become a powerful
method for uncovering critical failures in Autonomous
Driving Systems (ADS). However, the high computational cost of
executing realistic driving simulations, which often takes minutes
if not hours, at full fidelity significantly limits the scalability
of this approach. In this work, we introduce MFBO-Drive, a
novel approach that formulates critical scenario generation as a
multi-fidelity optimization problem. By adaptively selecting both
candidate test scenarios and their corresponding simulation
fidelity levels, MFBO-Drive enhances the efficiency of ADS testing
without compromising effectiveness. MFBO-Drive is instantiated
using the well-established Multi-Fidelity Bayesian Optimization
(MFBO) method and incorporates a fidelity exploration control
mechanism to balance simulation cost with predictive reliability.
We evaluate the approach on over 100,000 driving scenarios in
the MetaDrive simulator, comparing it against strong baselines
including single-fidelity Bayesian optimization and random
search. Experimental results show that MFBO-Drive significantly
enhances cost-effectiveness, achieving a 16.8% improvement
over state-of-the-art Bayesian optimization, while maintaining
comparable test quality. These results highlight its promise for
budget-constrained ADS testing in simulation environments.

Index Terms—Autonomous Driving Systems, Search-based
Software Testing, Multi-fidelity Bayesian Optimization.

I. INTRODUCTION

Simulation-based testing for Autonomous Driving Systems
(ADS) has been actively studied [1, 2] to ensure the safety
and reliability of ADS while reducing the costs and risks
involved in real-world testing. For example, a challenging
driving scenario involving interactions with lots of moving
vehicles and pedestrians can be simulated as a test scenario
in a driving simulator, such as MetaDrive [3] or CARLA [4],
to evaluate the ADS under test.

One can generate challenging driving scenarios automati-
cally by tweaking various scenario entities (e.g., road shapes,
the trajectories of other vehicles) with the goal of maximizing
the degree of safety violations (e.g., the distance from the
center of the lane) using optimization algorithms (e.g., Genetic
Algorithms and Bayesian Optimization). It has been actively
researched [5, 6], and naturally, they have relied on high-
fidelity driving simulators to mimic the real world as closely
as possible. However, high-fidelity simulations are often com-
putationally expensive, leading to significant time and resource
costs, especially when evaluating a large number of scenarios.

This work was supported by the Institute of Information & Commu-
nications Technology Planning & Evaluation(IITP) grant funded by the
Korea government(MSIT) (No. RS-2025-02218761, 50%) and by the Engi-
neering and Physical Sciences Research Council (EPSRC) [EP/Y014219/1,
EP/X024539/1].

This raises an essential question: Is the highest simulation
fidelity really necessary for evaluating safety violations across
all candidate scenarios?

For example, decreasing a simulation’s frame rate (i.e., the
frequency of updating the simulated world) from 60 Frames
Per Second (FPS) to 10 FPS could dramatically lower simu-
lation costs (time and resource) without significantly affecting
the assessment results for some test scenarios. Nevertheless,
to the best of our knowledge, none of the existing simulation-
based ADS testing studies have specifically leveraged lower-
fidelity simulations to minimize simulation costs while main-
taining the same level of test effectiveness.

In this paper, we answer the above question by presenting
a novel approach that dynamically varies simulation fidelity
to generate critical scenarios more efficiently. The key as-
sumption behind the approach is that not all test scenarios
would be significantly affected by lowering simulation fi-
delity; in other words, there would be some scenarios where
there is little or no difference between high- and low-fidelity
scenario assessments. If we could predict which scenario
evaluations are not to be affected negatively by the change
in simulation fidelity, we could effectively use lower-fidelity
simulations for as many test scenarios as possible, minimizing
the simulation costs without sacrificing the test accuracy. To
address this, we propose MFBO-Drive, which dynamically
varies simulation fidelity to uncover critical scenarios. We
adapt Multi-Fidelity Bayesian Optimization (MFBO) [7, 8] by
incorporating a domain-specific fidelity exploitation rate (ϵ).
This balances low-fidelity exploitation to address the specific
cost-accuracy trade-offs of ADS testing. Our evaluation on
MetaDrive demonstrates that this approach increases the cost-
effectiveness of critical scenario generation by up to 16.84%.

The main contributions of this paper are as follows.

(1) We propose MFBO-Drive, a novel ADS testing framework
that efficiently generates challenging driving scenarios
while minimizing cost of driving simulations (Section III).

(2) We provide empirical results demonstrating the effec-
tiveness and efficiency of our approach (Section IV).
The results highlight its significant potential to accelerate
simulation-based ADS testing.

(3) We present a publicly available replication package, that
includes a large simulation dataset (over 300,000 scenario
simulations requiring more than 300 compute hours) along
with the scripts allowing to replicate our experiments
(Section IV-F3).



II. BACKGROUND

A. Scenario-based ADS Testing in Driving Simulators

Scenario-based ADS testing in simulators involves three
main steps [9]: generation, execution, and evaluation. First,
a candidate test scenario is generated, defining a sequence
of events (e.g., trajectories of other vehicles) happening in
a specific environment (e.g., a T-junction with no traffic lights
on a foggy day). Next, the scenario is executed by a simulator
like MetaDrive [3] or CARLA [4], where the ADS-equipped
“ego vehicle” is placed in a virtual world created by the
simulator, interacting with other static and dynamic entities
in the scenario. Finally, the driving log data produced during
the scenario execution is evaluated for safety violations (e.g.,
collisions with other vehicles).

In the scenario execution step, the frequency at which the
virtual environment is updated (and the ego vehicle’s actions
are applied) is controlled by one of the fidelity parameters,
typically denoted as frames-per-second (FPS)1. Higher fidelity
yields more realistic results but increases computational cost,
while lower fidelity is faster but less accurate.

Finding critical scenarios that reveal safety violations is
challenging due to the sheer size and complexity of the
scenario space. Search-based testing frames this challenge
as a black-box optimization problem [6, 10]. Specifically,
let X denote the driving scenario domain, representing the
space of all possible driving scenarios. We consider a black-
box objective function f : X → R, commonly referred to
as a fitness function, which quantifies the degree of safety
violations of a scenario x ∈ X . Although the inverse of f
is not analytically available, we can evaluate f(x), i.e., the
fitness score of a given scenario x ∈ X , by executing the
ADS within a driving simulator. Therefore, the problem of
generating critical scenarios can be transformed into a black-
box optimization problem: identifying x∗ = argmaxx∈X f(x)
where x∗ denotes the globally optimal solution, i.e., a scenario
with the maximum degree of safety violations.

A naive approach to approximate the optimal solution is
Random Search (RS), which repeatedly samples scenarios
uniformly at random from X and evaluates them using f until
the search budget is exhausted. More sophisticated methods
like Bayesian Optimization are typically more efficient.

B. Bayesian Optimization

Bayesian Optimization (BO) is a black-box optimization
technique suitable for a computationally expensive objective
function that takes a long time (minutes or hours) to eval-
uate [11]. Instead of sampling the solution space randomly,
BO constructs a computationally inexpensive surrogate model
based on previously evaluated samples to approximate the
objective function and guide the selection of future candidates,
while considering prediction uncertainty, using an acquisition
function. It iteratively refines the surrogate model as more

1Note that FPS refers to simulated time. For example, 10 FPS means that the
sensor data is rendered 10 times per simulation-second. However, on a given
machine, longer simulation time means longer real-world execution time.

samples are evaluated, enabling efficient exploration of the
solution space. Below we detail a surrogate model and an
acquisition function.

1) Surrogate Models: A surrogate model µ serves as an
efficient approximation of the true objective function f . Tra-
ditionally, Gaussian Process (GP) regression has been the
most widely used surrogate model in BO [12, 13], because it
provides both the predictive mean µ(x) and uncertainty σ(x).
However, as noted by Frazier [11], GPs are only effective
when input dimension is below 20, beyond which prediction
efficiency and accuracy degrade. Alternatives such as Random
Forest and Gradient Boosting are evaluated in Section IV.

2) Acquisition Functions: An acquisition function α : X →
R determines which candidate solution to evaluate next on
the expensive objective function f . For a candidate solution
x ∈ X , it considers not only the surrogate model’s prediction
µ(x) but also its prediction uncertainty σ(x) to balance
exploration (high uncertainty) and exploitation (high predicted
score). Specifically, for a given α, the next candidate x′ is
selected as x′ = argmaxx∈X α(x). Although evaluating α(x)
is computationally inexpensive thanks to the surrogate model,
globally optimizing α over X is often infeasible, especially
when the search space X is continuous or high-dimensional.
A common practical approach is to use Monte Carlo sampling:
randomly sample m candidate solutions from X , evaluate the
acquisition function on each, and select the most promising
one based on these evaluations.

One of the most widely used acquisition functions is the
Upper Confidence Bound (UCB), defined as αUCB(x) =
µ(x)+σ(x). It assigns equal weight to exploitation and explo-
ration, favouring data points with high fitness estimates or high
uncertainty. For example, early in the search, when uncertainty
is high due to limited data, UCB promotes exploration of
under-sampled regions. As more evaluations are gathered and
the surrogate becomes more confident, the influence of σ(x)
diminishes, and UCB shifts toward exploitation by prioritizing
candidates with higher predicted fitness.

C. Multi-fidelity Bayesian Optimization

On top of standard BO, Multi-fidelity Bayesian Optimiza-
tion (MFBO) additionally takes advantage of a practical ob-
servation: the objective function f often depends on a fidelity
parameter (e.g., FPS in simulation-based ADS testing, as
discussed in Section II-A) which controls a trade-off between
evaluation cost and result accuracy [11, 14].

More specifically, let A denote the fidelity domain, repre-
senting all possible levels of evaluation fidelity. The specific
fidelity domain A depends on the simulator itself and is
independent of the input domain X (i.e., driving scenarios).
The black-box objective function f now accepts an additional
parameter a ∈ A, which controls the trade-off between
evaluation accuracy and computational cost. In other words,
for the same candidate x ∈ X , the value of f(x, a) may
differ depending on the chosen fidelity level a. The cost of
evaluating f(x, a) is described by a cost function c(a), which
is typically monotonic in a. Therefore, the problem is to solve



argmaxx∈X f(x, a∗), where a∗ denotes the “oracle” setting,
i.e., the highest fidelity level that enables the most accurate
and expensive version of f .

However, instead of evaluating only at the highest fidelity,
MFBO strategically chooses inputs xi ∈ X and the corre-
sponding fidelity levels ai ∈ A. It then observes outputs
yi = f(xi, ai) while aiming to minimize the total evaluation
cost

∑N
i=1 c(ai) or remain within a given budget B. To achieve

this, MFBO relies on a Multi-Fidelity (MF) surrogate model
and a corresponding MF acquisition function. A common
approach [8, 15] is to construct one surrogate model µ(x, a)
that jointly approximates f over both input x and fidelity
level a. Once µ(x, a) is trained, predictions at the highest
fidelity can be obtained directly via µ(x, a∗). This enables
the selection of the next candidate using any standard (single-
fidelity) acquisition function, evaluated at the oracle fidelity:
x′ = argmaxx∈X α(x, a∗). The corresponding fidelity level
a′ at which to evaluate x′ can then be selected using a fidelity
query function γ, such as a′ = maxa∈A γ(x′, a), where
γ(x′, a) quantifies the gain of evaluating x′ at a [16].

III. MFBO-DRIVE APPROACH

A major bottleneck in scenario-based ADS testing is the
high computational cost of executing driving scenarios in
realistic, high-fidelity simulators. However, we observe that
(1) modern simulators often expose dedicated parameters that
control simulation fidelity, and (2) these parameters directly
impact both the computational cost of simulation and the
behavior of the ADS under test. For example, reducing the
simulation frame rate (FPS) can substantially lower computa-
tional cost, but it may also alter how the ADS perceives and
reacts to the environment.

These key observations motivate a shift from traditional
single-fidelity simulation-based testing to a multi-fidelity test-
ing paradigm. This reformulation enables more efficient use
of computational resources by balancing the information gain
from evaluating a candidate scenario and the cost of running
the simulator at a given fidelity. To realize this strategy, we
present MFBO-Drive, a novel simulation-based ADS testing
approach that builds on the well-established MFBO method,
introduced in Section II-C. Our approach targets the ADS
testing domain with simulators that expose a finite, ordered set
of fidelity parameters, yet remains applicable to other domains.

A. Fidelity Exploration Control

Although applying MFBO to ADS testing appears straight-
forward once a simulator’s fidelity parameter is identified,
our preliminary study revealed a key practical limitation.
Standard MFBO tends to over-exploit low-fidelity evaluations
in scenario-based ADS testing, particularly in the early stages
of optimization when the surrogate model lacks sufficient high-
fidelity data. This imbalance can lead to the surrogate model
prematurely converging on misleading solutions, resulting in
suboptimal scenario selection.

To mitigate this issue, MFBO-Drive adopts a strategy in-
spired by the ε-greedy algorithm from reinforcement learning.

Specifically, we introduce a parameter ε, which defines the
probability of forcing a high-fidelity evaluation, regardless of
the outcome of the fidelity query function γ discussed in Sec-
tion II-C. This mechanism ensures minimum exploration of the
oracle fidelity level and prevents the approach from becoming
overly reliant on noisy or imprecise low-fidelity predictions.

B. MFBO-Drive: Algorithms

Algorithm 1 presents the pseudocode for MFBO-Drive. It
takes as input the scenario domain X , the fidelity domain A,
a total search budget bs, and an initialization budget bi. The
algorithm returns the most critical driving scenario x̂∗ ∈ X ,
selected based on evaluations collected until the budget bs is
exhausted. Internally, it builds and updates surrogate models
throughout the optimization process. The models are initially
trained on data from the first bi units of the budget.

Algorithm 1: MFBO-Drive
Input : Scenario Domain X , Fidelity Domain A, Search Budget

bs, Initialization Budget bi
Output: Most Critical Driving Scenario x̂∗

1 Running Cost c← 0
2 Set of Evaluated Scenarios D ← ∅
3 while c < bs do
4 if c < bi then
5 Candidate Scenario x′ ← random(X)
6 Candidate Fidelity Level a′ ← random(A)
7 else
8 (x′, a′)← getNextScenarioFidelity(D,X,A)

9 y′ ← f(x′, a′)
10 D ← D ∪ {(x′, a′, y′)}
11 X ← X \ {x′}
12 c← c+ t(a′)

13 return getBestSolution(D)

The algorithm initializes the total running cost c and the
set of evaluated scenarios D (lines 1-2). It then enters a loop
that continues until the search budget bs is exhausted (line 3).
In each iteration, the algorithm decides whether to perform
random initialization or to use the model-guided search. If the
current cost c is less than the initialization budget bi, the al-
gorithm samples a candidate scenario x′ and a fidelity level a′

randomly from the scenario domain X and the fidelity domain
A, respectively (lines 4-6). This ensures diverse initial data for
training the surrogate model. Once initialization is complete,
MFBO-Drive calls the function getNextScenarioFidelity
(detailed in Algorithm 2) to select the next scenario-fidelity
pair (x′, a′) (line 8). The selected scenario is then evaluated
in selected fidelity using the objective function f(x′, a′),
and the result y′ is recorded (line 9). The new observation
(x′, a′, y′) is added to the evaluation history D, and the
scenario x′ is removed from the search space to to never
simulate the same scenario twice (lines 10-11). The cost of
the evaluation, defined by the fidelity level a′, is added to the
running cost c (line 12). Once the budget is fully consumed,
the algorithm returns the best scenario discovered during the
search by analyzing the evaluation history D (line 13).

Algorithm 2 outlines the getNextScenarioFidelity function.
It takes as input the current set of evaluated scenarios D,



the scenario domain X , the fidelity domain A, the fidelity
exploration rate ε, and the fidelity error threshold emax . It
then returns a scenario-fidelity pair (x′, a′) where x′ ∈ X is
the next candidate scenario and a′ ∈ A is the fidelity level at
which the evaluation should be performed.

Algorithm 2: getNextScenarioFidelity
Input : Set of Evaluated Scenarios D, Scenario Domain X ,

Fidelity Domain A, Fidelity Exploration Rate ε, Fidelity
Error Threshold emax

Output: Candidate Scenario x′, Candidate Fidelity Level a′

1 Highest Fidelity Level a∗ ← getHighestFidelity(A)
2 Surrogate Model (µ, σ)← trainSurrogateModel(D)
3 Acquisition Function α← updateAcqFunction(µ, σ)
4 Candidate Scenario x′ ← argmaxx∈X α(x, a∗)
5 if Uniform(0, 1) < ε then
6 Candidate Fidelity Level a′ ← a∗

7 for Fidelity Level a ∈ sort(A) do
8 Estimated Fidelity Error e← |µ(x′, a)− µ(x′, a∗)|
9 if e < emax then

10 Candidate Fidelity Level a′ ← a
11 break

12 return (x′, a′)

The algorithm begins by identifying the highest fidelity (i.e.,
the oracle fidelity) a∗ ∈ A (line 1) and updating the surrogate
model µ based on the current history D (line 2). Using the
fidelity-aware model, the acquisition function α is updated
based on µ (line 3) and maximized over x ∈ X (at a∗) to select
the most promising candidate scenario x′ (line 4). This strategy
ensures that candidate selection is always driven by high-
fidelity predictions. The algorithm then chooses the fidelity
level a′ for x′. With an exploration probability ε, a′ is forced
to a∗ as discussed in Section III-A (lines 5-6). Otherwise,
the algorithm proceeds to search for the lowest safe fidelity.
It iterates through the fidelity levels in ascending order and
select the first level a for which the estimated fidelity error,
|µ(x′, a)− µ(x′, a∗)|, is below the predefined threshold emax

(lines 7-11). Finally, the selected scenario-fidelity pair (x′, a′)
is returned (line 12).

IV. EMPIRICAL EVALUATION

Our evaluation addresses the following research questions:
RQ1 How sensitive are the driving scenario evaluation results

to changes in the fidelity parameters?
RQ2 Which surrogate model performs best within MFBO-

Drive in terms of predictive power?
RQ3 How does MFBO compare to other scenario generation

techniques in terms of effectiveness and efficiency?
RQ4 What is the impact of varying hyperparameter values on

the performance of MFBO?
RQ1 investigates the feasibility of applying MFBO to the

context of ADS testing. RQ2 examines which surrogate model
is most effective for approximating the driving evaluation
function, prior to its use in an online learning setting. RQ3
compares our multi-fidelity approach with baselines (e.g.,
single-fidelity BO, Random Search), in terms of effectiveness
and efficiency. This is the main research question that can

demonstrate the benefits of our approach. RQ4 assesses the
robustness of our approach with respect to its hyperparameters
(e.g., initialization budget, and minimal probability of using
the highest fidelity evaluation).

A. Case Study Subjects

1) Simulator: To answer the RQs, we use MetaDrive [3],
an actively maintained open-source driving simulator
capable of realistic perception and easy scenario generation.
Importantly, MetaDrive has been shown to avoid unintentional
non-determinism during simulation [17], addressing a threat
to the validity of search-based testing experiments. Although
we use MetaDrive, a relatively fast simulator for the sake of
large-scale evaluation, our approach can be applied with more
computationally intensive simulators, which can take up to
several hours if not days, to run thousands of simulations.

2) ADS under Test: For the ADS, we utilize the expert
policy, a simple neural network-based driving agent provided
by default in MetaDrive. It inputs the ray-based sensor data
(Lidar, side scanner, and lane line detector) and outputs the
throttle, braking, and lateral steering control. It has been pre-
trained by MetaDrive’s contributors, using Proximal Policy
Optimization (PPO) reinforcement learning algorithm [18].
For the purpose of this evaluation, using a relatively simple
ADS, such as the expert policy, is acceptable, since our
focus is on evaluating a novel ADS-agnostic test generation
framework in terms of effectiveness and efficiency.

3) Test Scenarios: In our evaluation, a basis of each testing
scenario is a map generated by MetaDrive’s built-in procedural
map generator [3]. Each map is a connection of five primitive
road blocks (e.g., straight road, curve, and a roundabout) that
can be further parametrized (e.g., by length and the radius
of curvature). The scenario generator uses a random seed to
deterministically define start and end points for background
vehicles. Given a defined map and background traffic
configuration, the ego vehicle is tasked with navigating from
a starting point (located on the first road block) to a destination
(on the last road block) while satisfying safety requirements.

To enable optimization, each scenario is encoded as a
fixed-length vector of real numbers, denoted as x. Categorical
variables (e.g., block types) are encoded as integers, while
continuous parameters (e.g., curvature radius) are represented
directly. This vector captures the complete scenario definition,
including: a road network layout, ego vehicle’s initial position
and destination, and the initial positions, sizes, and attributes
of all background vehicles. To standardize input dimensions,
we fix the maximum number of background vehicles at
40, resulting in a vector of length 461. Scenario vectors
containing fewer vehicles are padded with placeholder values
(i.e., −1) to fill the missing fields.

4) Safety Requirements: For each scenario, we evaluate the
ADS by counting the number of infractions for the following
safety requirements in MetaDrive: (1) reach the destination
within the time limit; (2) no collisions with other vehicles;
(3) no collisions with sidewalks; (4) no out-of-lane episodes.



0 200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

a1
a2
a3
Error threshold smax = 0.05

Fig. 1. Results of sensitivity analysis for a 1000 driving scenarios, across
three lower fidelity configurations in Aeval.

We selected the above requirements as they capture the most
important requirements of safe autonomous driving.

The objective function f : X → R quantifies scenario
criticality using the Driving Score (DScore), adapted
from the CARLA Leaderboard2. Specifically, DScore =
Rc × Rd × 0.65nsw × 0.60nveh , where Rc is the percentage of
route completed, Rd is the percentage of time driven in correct
lane, nsw is the number of collisions with sidewalks, and
nveh is the count of collisions with other vehicles. It captures
the overall driving performance of the ADS in a scenario,
ranging from 1 (no infractions) to 0 (full of infractions).

5) Fidelity Levels: For evaluation, we use a discrete set of
fidelity levels Aeval = {10 FPS, 20 FPS, 30 FPS, 60 FPS} by
varying FPS in MetaDrive. Our preliminary study confirmed
that simulation cost is linearly dependent with the FPS param-
eter: running at 20 FPS costs twice as much as at 10 FPS, and
so on. To simplify notation, we define the execution unit cost
as c(a) = a

10 . Thus, a 10 FPS simulation has a cost of 1, a
20 FPS simulation a cost of 2, and so forth.

B. RQ1: Effects of fidelity parameter on driving evaluation

1) Setup: To address RQ1, we conducted a sensitivity anal-
ysis to assess how the driving scenario evaluation results vary
with changes in the fidelity parameter. Given an ordered set
of fidelity parameters A = {a1 = 10 FPS, a2 = 20 FPS, a3 =
30 FPS, a4 = 60 FPS}, the sensitivity of a scenario x at a
fidelity level ai for i ∈ {1, 2, 3} is defined as Sen(x, ai) =
|f(x, ai)− f(x, ai+1)| where f(x, ai) denotes the DScore of
the ADS when evaluated on x under some lower fidelity ai.

Intuitively, for MFBO to be effective, Sen(x, ai) should
remain below a small threshold smax for most x ∈ X and
ai ∈ A. Otherwise, if Sen(x, ai) is high across many x and
ai, even small changes in fidelity may lead to large variations
in the DScore of x, undermining the assumption that lower-
fidelity simulation results provide reliable approximations of
higher-fidelity results. To evaluate if Sen(x, ai) is smaller
than smax = 0.05 (meaning 5% of DScore) for most x and
ai, we randomly generated a set of 1,000 driving scenarios
X1k using MetaDrive’s built-in map generator and calculated
Sen(x, ai) for all x ∈ X1k and a ∈ Aeval.

2) Results: Figure 1 shows the distribution of sensitivity
of 1,000 driving scenarios under different fidelity levels,
sorted by magnitude. Notably, 92.5% of scenarios fall below
smax, indicating that their evaluation results remain consistent

2https://leaderboard.carla.org

regardless of simulation fidelity. This is not just due to the
triviality of the scenarios; they involve diverse driving tasks,
including lane changes, turns, and interactions with other
vehicles. Interestingly, our inspection reveals no apparent
structural characteristics (e.g., specific road shapes) that
distinguish fidelity-sensitive scenarios from insensitive ones.
This lack of apparent patterns further highlights the necessity
of our MFBO-Drive approach, which can automatically
model the complex, non-linear relationship between scenario
parameters, simulation fidelity, and safety outcomes.

The answer to RQ1 is that 92.5% of driving scenarios
are unaffected by changes in simulation fidelity, showing a
strong potential for applying multi-fidelity optimization.

C. RQ2: Surrogate Models
1) Setup: To answer RQ2, we compare surrogate models

by training them on the same dataset and evaluating their
prediction accuracy, training time, and inference time (i.e.,
time to make a prediction). As described in Section III, we
adopt an input-augmented surrogate model that predicts the
fitness value f(x, a) given a scenario definition x and fidelity
setting a. For training, we reused the dataset collected in RQ1
(Section IV-B). Specifically, we sampled 1,000 scenario defini-
tions from MetaDrive, each representing the simulator’s initial
state at the start of a scenario. Every scenario was evaluated
under all fidelity settings in the evaluation set Aeval , resulting
in a complete dataset of 4,000 evaluation results f(x, a).

To evaluate potential surrogate modeling approaches, we
evaluated a handful of popular machine learning techniques,
provided in Scikit-learn [19]: (1) Gaussian Process regression,
a traditional approach in the field, Linear models (2) Ridge,
(3) Lasso, (4) ElasticNet, and following ensemble: (5)
Random Forest, (6) Gradient Boosting. During the evaluation,
we did not tweak the default settings, nor did we perform
hyperparameter tuning.

To evaluate model performance, we conducted 10-fold
cross-validation using randomized splits, repeated across ten
different random seeds. To assess predictive accuracy, we
measured the coefficient of determination (R2), a standard
metric for evaluating the performance of regression models.
In addition to prediction accuracy, we recorded the total
training time and total prediction (inference) time for each
model across all folds and seeds. Final results were obtained
by averaging these metrics over the ten seeds to ensure
robustness and reduce variance due to random initialization.

2) Results: Table I summarizes the performance results
for the evaluated regression methods. Most notably, Gaussian
Process regression performed poorly, achieving a negative
R2 score of -20.723, meaning that the trained model did not
possess any predictive power. This could be mainly because
GP works best with vectors of continuous features [11] of low
dimensionality (|x| < 20), while our driving scenarios contain
a large number of categorical features. Linear models turned
out to be quick to train (less than half a second) and managed
to achieve some level of predictive power. Surprisingly, the
Ridge linear model achieved a satisfactory R2 score of 0.4.



TABLE I
SURROGATE MODEL PERFORMANCE STATISTICS

Regression
Method

Method
Type

R2 Pred Time [s] Train Time [s]

Mean ↓ Std Mean Std Mean Std

Random Forest Ensemble 0.833 0.044 0.049 0.007 16.612 1.134
Gradient Boost Ensemble 0.604 0.047 0.044 0.005 6.726 0.433
Ridge Linear 0.402 0.068 0.046 0.006 0.445 0.032
Elastic Net Linear 0.075 0.023 0.047 0.006 0.446 0.032
Lasso Linear 0.043 0.016 0.048 0.008 0.446 0.035
GP Other -20.723 3.150 0.760 0.400 7.498 1.009

(↓ The table is sorted by the mean R2 value in descending order)

The ensemble models outperforms, achieving R2 scores
equal to 0.60 and 0.83 respectively. They also showed quick
inference (prediction) time of less than 0.05s, making them
a good fit for Bayesian Optimization. While the ensemble
methods incurred higher training times than linear models,
this overhead is negligible in the broader context of ADS
testing, where simulation-based evaluations are considerably
more computationally expensive.

The answer to RQ2 is that Random Forest surrogate models
offer the best prediction accuracy while maintaining high
efficiency, making a suitable choice for MFBO-Drive.

D. RQ3: Efficiency and effectiveness of MFBO

1) Setup: To address RQ3, we assessed the effectiveness
and efficiency of our MFBO approach, configured with
the best-performing surrogate model identified in RQ2. We
compared MFBO against two baseline methods: Random
Search (RS) and Single-Fidelity Bayesian Optimization
(SFBO). RS is a common, robust baseline for search-based
testing [6], while SFBO serves as a meaningful comparator
since it shares the same Bayesian optimization framework
and surrogate model as MFBO but operates at a single fidelity
level. This comparison isolates the contribution of multi-
fidelity-based optimization in the context of ADS testing.

All approaches were allocated the same total budget of
600 simulation time units, equivalent to 100 high-fidelity
evaluations or 600 low-fidelity evaluations. For both SFBO and
MFBO, 10% of the budget (i.e., 60 time units) was reserved for
the random initialization phase (i.e., bi = 0.1bs). Both used the
Random Forest surrogate from as identified in RQ2. The pre-
dictive mean µ(x) was computed as the average output of 100
random trees, and the predictive uncertainty σ(x) as the stan-
dard deviation of their outputs. For acquisition, we used the
Upper Confidence Bound (UCB) strategy (see Section II-B).
RQ4 will further examine the impact of varying bi values.

To isolate the benefit of multi-fidelity optimization, RS and
SFBO were limited to the highest (oracle) fidelity. MFBO, in
contrast, was permitted to dynamically select lower fidelities
when predicted to be safe, following the strategy outlined in
Algorithm 2. The hyperparameter ε = 0.1 guarantees that at
least 10% of the evaluations are performed at the highest fi-
delity. RQ4 will further examine the effect of varying ε values.

For a fair comparison across approaches, we constructed a
diverse benchmark set of 100,000 driving scenarios X100k us-
ing MetaDrive’s built-in map generator. To find the global opti-

0 100 200 300 400 500 600
Allowed Cost

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
Si

m
pl

e 
Re

gr
et

Search Algorithm
Random Search
Single Fidelity Bayesian Optimization
Multi-fidelity Bayesian Optimization

Fig. 2. Search convergence for scenario generation, visualized as a mean
simple regret over time for each search approach4. The red dotted line
indicates the end of the initialization phase.

mum (i.e., the scenario with the lowest DScore) among X100k ,
we executed every scenario x ∈ X100k once at the highest
fidelity level a∗, yielding its oracle DScore f(x, a∗). The
scenario with the lowest oracle DScore is denoted x∗ ∈ X100k .

We quantify the effectiveness of each testing approach using
simple regret, which measures the deviation from the global
optimum x∗ after consuming a given computation budget.
Specifically, for the best scenario xb identified by a search
algorithm after spending budget b, the simple regret is defined
as r(xb) = |f(xb, a

∗)−f(x∗, a∗)|, where f(x, a∗) denotes the
objective value evaluated at the oracle fidelity level a∗. This
metric captures how close the best-found solution is to the
true optimum, providing a direct indicator of search quality.

Due to the inherent randomness of all approaches (e.g.,
random initialization, surrogate model learning, scenario
sampling), each experiment was repeated 50 times. To evaluate
performance differences, we used the following statistical
methods: (1) the Mann-Whitney U test, to assess whether
MFBO significantly outperforms each baseline in terms of
simple regret; (2) the A12 effect size, to quantify the probability
that MFBO yields lower regret than the comparator.

2) Results: Figure 2 illustrates the relationship between
the budget consumed and simple regret across evaluated
approaches, while Table II presents the statistical test results.

Among the approaches, RS consistently exhibits the highest
regret values throughout the budget range, indicating the
weakest performance in both effectiveness and efficiency. In
contrast, MFBO-Drive achieves the lowest regret across nearly
all budget levels, reflecting superior cost-effectiveness, as well
as the lowest final regret at the end of the search, indicating
stronger overall effectiveness.

When comparing MFBO-Drive and RS, MFBO-Drive
achieves a 36.7% improvement in cost-effectiveness, measured
by the area under the simple regret curve (AUC). Even during
the initialization (the first 10% of the budget, marked by the
red dashed line in Figure 2), MFBO-Drive benefits from low-
cost, low-fidelity evaluations, yielding lower regret than RS,
which relies solely on high-fidelity sampling. After initial-

4By definition, the curve of simple regret for high-fidelity only approaches
should be monotonically decreasing. However, due to simulator nondetermin-
ism (as discussed in Section IV-F2), the evaluation of f(x, a∗) may yield
different results.



TABLE II
STATISTICAL COMPARISON OF MFBO-DRIVE AGAINST RANDOM SEARCH

(RS) AND SINGLE-FIDELITY BAYESIAN OPTIMIZATION (SFBO)

Compared
Algorithms

∆ Cost-
Effectiveness At time: 100 200 300 400 500 600

MFBO, RS 36.73% A12 0.703 0.697 0.715 0.665 0.656 0.693
p-value 0.000 0.001 0.000 0.004 0.007 0.001

MFBO, SFBO 16.84% A12 0.677 0.597 0.533 0.489 0.479 0.475
p-value 0.002 0.094 0.568 0.847 0.722 0.674

(∆ Cost-Effectiveness: difference in cost-effectiveness measured by the area under the
simple regret curve, A12: effect sizes, p-value: Mann-Whitney U test p-value)

ization, MFBO-Drive maintains a 22.2% lower simple regret
than RS, reinforcing its advantage in early-stage performance.

In comparing MFBO-Drive and SFBO, MFBO-Drive
outperforms SFBO during the first half of the search (i.e., up
to 300 units), using low-fidelity evaluations to quickly identify
promising regions. However, this advantage diminishes in the
second half, where both approaches converge toward near-
optimal solutions and exhibit similar final performance. Mann-
Whitney U tests confirm that there is no significant difference
in final effectiveness between MFBO-Drive and SFBO (p-
value > 0.5; see Table II). Nonetheless, MFBO gains a 16.8%
improvement in cost-effectiveness over SFBO, based on AUC.
This demonstrates that MFBO makes more efficient use of
the evaluation budget without sacrificing solution quality.

The answer to RQ3 is that MFBO improves early-stage
efficiency without compromising the final solution quality,
making it a practical and cost-effective alternative to
single-fidelity methods in budget-constrained ADS testing.

E. RQ4: Impact of hyperparameters

1) Setup: To assess the effect of MFBO-Drive’s
hyperparameters, we ran experiments varying (1) the
fidelity exploitation rate ε, and (2) the initialization budget
bi, while using the same setup as the baseline comparison.
In the first, we varied ε from 0 to 0.5 in steps of 0.05, while
keeping the initialization budget fixed at bi = 10% bs, where
bs = 600 is the total search budget. In the second, we varied
bi from 5% to 20% in steps of 5%, while keeping ε = 0.1.
We evaluated each variant’s efficiency and effectiveness,
using the same metrics as in RQ3, comparing them against a
baseline configuration of MFBO with ε = 0.1 and bi = 10%.

2) Results: Table III shows the comparison between the
baseline MFBO-Drive and MFBO-Drive’s variants with varied
values of hyperparameters: ε and bi. Full results for tested ε
and bi values are in the replication package (Section IV-F3).

Overall, we observe that the effectiveness of MFBO-Drive
is robust to variations in ε. Pairwise Mann-Whitney U tests
reveal no statistically significant differences in final simple
regret across different ε settings (lowest p-value: 0.262). In
terms of efficiency, however, configurations with higher ε
values (e.g., ε = 0.5) exhibit poorer performance relative to
the baseline. This is expected, as evaluating at the highest
fidelity too frequently (more than 50% of the time) diminishes
the advantage of cost-effective optimization through multi-
fidelity modeling. Although there is no statistically significant

TABLE III
STATISTICAL COMPARISON OF MFBO-DRIVE AGAINST MFBO-DRIVE

VARIANTS WITH NON-DEFAULT HYPERPARAMETERS

Compared
Algorithms

∆
Cost-Effectiveness At time: 100 200 300 400 500 600

MFBO, MFBOε=0.0 8.42% A12 0.504 0.459 0.436 0.444 0.460 0.565
p-value 0.950 0.485 0.269 0.335 0.489 0.262

MFBO, MFBOε=0.2 -1.05% A12 0.497 0.487 0.467 0.456 0.435 0.482
p-value 0.959 0.830 0.568 0.447 0.263 0.759

MFBO, MFBOε=0.5 -22.11% A12 0.587 0.579 0.525 0.493 0.441 0.479
p-value 0.132 0.173 0.669 0.904 0.312 0.720

MFBO, MFBObi=5% -1.34% A12 0.490 0.533 0.541 0.505 0.504 0.570
p-value 0.863 0.569 0.479 0.939 0.945 0.227

MFBO, MFBObi=15% 1.48% A12 0.536 0.422 0.481 0.460 0.436 0.495
p-value 0.539 0.180 0.746 0.496 0.269 0.939

MFBO, MFBObi=20% -7.71% A12 0.553 0.585 0.512 0.473 0.495 0.550
p-value 0.361 0.145 0.839 0.638 0.937 0.385

(∆ Cost-Effectiveness: difference in cost-effectiveness measured by the area under the
simple regret curve, A12: effect sizes, p-value: Mann-Whitney U test p-value)

difference between configurations with ε = 0.0 and ε = 0.1,
we observed that setting ε = 0.0 can cause instability in some
search runs, resulting in a slight increase in simple regret.
Therefore keeping ε = 0.1 is preferred in practice due to its
greater robustness and more reliable convergence behavior.

Table III shows that MFBO-Drive is robust to changes
in the initialization budget: we observed no statistically
significant differences in performance between runs with
different amounts of budget allocated to the initial random
sampling (lowest p-value: 0.227). This robustness arises from
the nature of the early search phase. When the surrogate
model has access to only limited data, the acquisition function
tends to assign similar values to most candidate scenarios. As
a result, MFBO-Drive behaves similarly to random sampling
during this phase, regardless of the exact value of bi, thereby
ensuring reasonably unbiased exploration of the search space.

The answer to RQ4 is that MFBO’s efficiency is generally
robust to the choice of ε and bi. However, we observe that
smaller values of ε tend to yield slightly higher efficiency
by reducing the number of high-cost evaluations.

F. Threats to Validity

1) External validity: We use a specific simulator (i.e.,
MetaDrive) with specific driving agent (i.e., expert policy) that
poses an external validity threat. A different simulator paired
with a more advanced driving agent is a subject to future
experiments. Reproducing the same evaluation would require
230 thousand driving simulations, given that a single scenario
execution takes a minute on average, it would require 160
computing days to complete. Nonetheless, further experiments
with other ADSs and simulators are needed to demonstrate
generalizability. MFBO is not limited to any particular
simulator, most modern ones (e.g., CARLA [4]) expose
fidelity parameters such as frame-rate or rendering settings.

In our methodology, we assumed that the cost of simulation
depends solely on the fidelity parameter. In reality, cost can
also vary with scenario itself. To give an example, if driving
agent gets blocked with other traffic vehicle, simulation will
take a longer time. Lastly, there could be external factors
that add the potentially non-negligible constant time, e.g.,
restarting the driving simulator between evaluations.



2) Internal validity: A big threat to validity is non-
determinism of driving simulation [17] making reproducibility
challenging. To minimise this, we adopted following mit-
igation strategies: we seeded all relevant random number
generators and restarted the simulation environment after each
scenario execution to ensure consistent initialization. In our
evaluation, we executed 9729 driving scenarios twice in the
highest fidelity. We found that 1.52% of these scenarios
produced diffrent results on re-evaluation (when compared to
five significant digits), indicating a low but present level of
unintentional nondeterminism.

3) Data availability: The replication package is available
on Figshare https://figshare.com/s/ba8790c8ad504514be41

V. RELATED WORK

Our research sits at the intersection of black-box testing
for Autonomous Driving Systems (ADS) and applied multi-
fidelity optimization. Black-box ADS testing seeks test inputs
(i.e., a driving scenario) that expose a safety requirement
violation (e.g., a collision). Recent studies have accelerated
critical scenario generation with many search-based methods
in particular surrogate-assisted testing [6, 20] which leverages
machine-learning models to capture complex input-output
landscape of the underlying objective function to help navi-
gating the search domain. Abeysirigoonawardena et al. [13]
applied Bayesian Optimization to find scenario parameters of
dynamic entities (i.e., cars and pedestrians) that cause safety
violation of the ADS under test. Multi-Fidelity Bayesian
Optimization (MFBO), extends above methods giving ways
for the strategic selection of physics modeling settings (i.e., the
fidelity) trying to achieve the balance between precision and
efficiency [14]. This is especially beneficial when acquiring
high-accuracy data is costly or computationally intensive.
MFBO has been successfully applied in various engineering
tasks, such as neural network hyperparameter tuning [21]
and engineering design [15, 22]. However, no existing study
addresses challenges of applying multi-fidelity optimization to
the problem of driving scenario generation for ADS testing.

VI. CONCLUSION

This paper introduced MFBO-Drive, a novel approach for
cost-effective critical scenario generation in scenario-based
testing of ADS. By formulating the problem as a multi-
fidelity optimization problem, MFBO-Drive enables to dy-
namically select both driving scenarios and the corresponding
fidelity levels for evaluation. Empirical evaluation using the
MetaDrive simulator shows that MFBO-Drive significantly
outperforms both single-fidelity Bayesian Optimization and
Random Search in terms of cost-effectiveness. It demonstrates
that MFBO-Drive is well-suited for budget-limited testing
environments. As part of future work, we will explore the
application of MFBO-Drive to state-of-the-art ADS and more
computationally expensive simulators.

REFERENCES
[1] X. Zhang, J. Tao, K. Tan, M. Törngren, J. M. G. Sánchez, M. R.

Ramli, X. Tao, M. Gyllenhammar, F. Wotawa, N. Mohan, M. Nica,

and H. Felbinger, “Finding critical scenarios for automated driving
systems: A systematic mapping study,” IEEE Transactions on Software
Engineering, vol. 49, no. 3, pp. 991–1026, 2023.

[2] W. Ding, C. Xu, M. Arief, H. Lin, B. Li, and D. Zhao, “A survey on
safety-critical driving scenario generation—a methodological perspec-
tive,” IEEE Transactions on Intelligent Transportation Systems, vol. 24,
no. 7, pp. 6971–6988, 2023.

[3] Q. Li, Z. Peng, L. Feng, Q. Zhang, Z. Xue, and B. Zhou, “Metadrive:
Composing diverse driving scenarios for generalizable reinforcement
learning,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 45, no. 3, pp. 3461–3475, 2022.

[4] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. of the Annual
Conference on Robot Learning, 2017, pp. 1–16.

[5] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles,” IEEE
Transactions on Software Engineering, vol. 49, no. 4, pp. 1860–1875,
2023.

[6] F. U. Haq, D. Shin, and L. Briand, “Efficient online testing for
dnn-enabled systems using surrogate-assisted and many-objective op-
timization,” in Proc. of the 44th International Conference on Software
Engineering, ser. ICSE ’22, 2022, p. 811–822.

[7] D. Huang, T. T. Allen, W. I. Notz, and R. A. Miller, “Sequential
kriging optimization using multiple-fidelity evaluations,” Structural and
Multidisciplinary Optimization, vol. 32, pp. 369–382, 2006.

[8] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos, “Multi-
fidelity Bayesian optimisation with continuous approximations,” in Proc.
of the 34th International Conference on Machine Learning, ser. Proc.
of Machine Learning Research, D. Precup and Y. W. Teh, Eds., vol. 70.
PMLR, 06–11 Aug 2017, pp. 1799–1808.

[9] Z. Zhong, Y. Tang, Y. Zhou, V. d. O. Neves, Y. Liu, and B. Ray, “A
survey on scenario-based testing for automated driving systems in high-
fidelity simulation,” 2021.

[10] M. Klischat and M. Althoff, “Generating critical test scenarios for
automated vehicles with evolutionary algorithms,” in Proc. of the IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2019, pp. 2352–2358.

[11] P. I. Frazier, “A tutorial on bayesian optimization,” arXiv preprint
arXiv:1807.02811, 2018.

[12] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” Advances in Neural Information
Processing Systems, vol. 25, 2012.

[13] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating ad-
versarial driving scenarios in high-fidelity simulators,” in ICRA, 2019.

[14] K. Li and F. Li, “Multi-fidelity methods for optimization: a survey,”
arXiv:2402.09638, 2024.

[15] B. Do and R. Zhang, “Multifidelity bayesian optimization: A review,”
AIAA Journal, pp. 1–37, 2023.

[16] M. Meliani, N. Bartoli, T. Lefebvre, M.-A. Bouhlel, J. R. Martins, and
J. Morlier, “Multi-fidelity efficient global optimization: Methodology
and application to airfoil shape design,” in AIAA aviation 2019 forum,
2019, p. 3236.

[17] O. Osikowicz, P. McMinn, and D. Shin, “Empirically evaluating flaky
tests for autonomous driving systems in simulated environments,” in
2025 IEEE/ACM International Flaky Tests Workshop (FTW). Institute
of Electrical and Electronics Engineers (IEEE), 2024.

[18] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] S. Nejati, L. Sorokin, D. Safin, F. Formica, M. M. Mahboob, and
C. Menghi, “Reflections on surrogate-assisted search-based testing: A
taxonomy and two replication studies based on industrial adas and
simulink models,” Information and Software Technology, 2023.

[21] A. Klein, S. Falkner, S. Bartels, P. Hennig, and F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” in
Proc. of the 20th International Conference on Artificial Intelligence and
Statistics, 2017, pp. 528–536.

[22] S. Li, W. Xing, R. Kirby, and S. Zhe, “Multi-fidelity bayesian opti-
mization via deep neural networks,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, 2020, pp. 8521–8531.

https://figshare.com/s/ba8790c8ad504514be41

	Introduction
	Background
	Scenario-based ADS Testing in Driving Simulators
	Bayesian Optimization
	Surrogate Models
	Acquisition Functions

	Multi-fidelity Bayesian Optimization

	MFBO-Drive Approach
	Fidelity Exploration Control
	MFBO-Drive: Algorithms

	Empirical Evaluation
	Case Study Subjects
	Simulator
	ADS under Test
	Test Scenarios
	Safety Requirements
	Fidelity Levels

	RQ1: Effects of fidelity parameter on driving evaluation
	Setup
	Results

	RQ2: Surrogate Models
	Setup
	Results

	RQ3: Efficiency and effectiveness of MFBO
	Setup
	Results

	RQ4: Impact of hyperparameters
	Setup
	Results

	Threats to Validity
	External validity
	Internal validity
	Data availability


	Related work
	Conclusion

